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Numerical analysis of a 3D hydrodynamic contact
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SUMMARY

We study here the numerical analysis of a hydrodynamic contact in a particular con�guration: the 3D
incompressible viscous �ow of a �uid dragged by a smooth plate over a rough surface. The mathematical
model takes into account and discretizes the local topography of the rough pro�le. The simulation
outcome will be the 3D velocity and pressure �elds of the �uid �lm within the contact borders. This
work is limited to the study of numerical resolution methods working solely in �nite di�erences. The
algorithms will be tested by analysing and comparing their results with analytically known �ows.
Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Energy loss and friction phenomena have always been domains of major interest for the
scientists. In this context, the present work tries to characterize, numerically, the tribological
properties of rough surfaces in a particular con�guration: the 3D incompressible viscous �ow
in the hydrodynamic contact between a smooth plate and a rough surface. The geometry of the
contact is strongly related to the physical parameters of the �ow. Generally, in such conditions,
the �uid �lm is relatively thin but always thicker than the surface roughness characteristic
size, so that no elastic contact occurs.
This study is performed within the framework of a friction prediction tool for hydrodynamic

contacts. First, this tool will enable us to analyse in depth the �ows in hydrodynamic bearings
and to obtain signi�cant results concerning the in�uence of the surface topography on the
contact tribological performance. Furthermore, the tool may be used, as objective function, to
perform topography optimization for friction reduction issues.
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1356 C. A. CACIU AND E. DECENCIERE

The surfaces studied are available as 2D topographic images. Image processing tools have
been developed in order to extract and analyse the topographic characteristics of such rough
surfaces [1]. Nevertheless, their application is limited; the physical phenomena occurring in
the hydrodynamic contact are complex, and global parameters like drag or lift are di�cult to
estimate from the topographic analysis of the surface alone.
Consequently, we propose a 3D hydrodynamic contact model; the inputs will be the rough

surface as a 2D image and the physical and geometrical parameters; the �uid �ow in the
de�ned volume will be examined. Despite the wish to build as generic a model as possible,
several assumptions have to be introduced in order to simplify our study.

2. THE PHYSICAL MODEL

We consider a viscous incompressible �uid, at time t, inside a volume limited on the upper
side by a smooth plate P and on the lower side by a rough surface R. We obtain a bounded
domain of R3, that we denote � (Figure 1). In the direct orthogonal reference (0; i1; i2; i3),
attached to a terrestrial reference, � is de�ned as follows:

∀x ∈ R3; x = (x1; x2; x3) ∈ � ⇐⇒

⎧⎪⎪⎨
⎪⎪⎩
06x16l1

06x26l2

f(x1; x2)6x36l3

(1)

f being the function describing the rough surface R. � dimensions are l1, l2 and l3 and
we denote @� the sub-domain containing the borders of �. We suppose f(x1; x2)¡l3 for all
(x1; x2) such that 06x16l1 and 06x26l2.
The rough surface R is motionless and the smooth plate P moves with the velocity

vp=(vp; 0; 0). The movement of the �uid generated by the displacement of the smooth plate P
is de�ned by its velocity v=(v1; v2; v3) (x; t) and by its pressure p=p(x; t). The downstream
and upstream pressures are settled to p(l1; x2; x3)=p1 and p(0; x2; x3)=p2.

Assumptions
The mathematical description of the previous �ow is associated to a set of physical as-
sumptions which constitute the physical model [2–4]. The numerical results will permit,

Figure 1. 3D contact.
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NUMERICAL ANALYSIS OF A 3D HYDRODYNAMIC CONTACT 1357

a posteriori, to reject or to accept these assumptions, limiting the universality of the model.
The mathematical formulation is based on the following presumptions:

c1. The �uid is considered Newtonian and incompressible, i.e. the velocity is supposed to
be small compared to the sound velocity and wave phenomena are neglected.

c2. Thermodynamics do not play any role, the physical parameters of the �uid (density �,
viscosity �; : : :) are considered constant. The only unknown variables are the velocity
vector v and the pressure �eld p.

c3. Any chemical reaction is excluded in the monophasic presumed �uid.
c4. The �uid adheres totally to solids (no-slip boundaries).
c5. Remote forces (gravity) are neglected.

Any information on �′ external geometry is unknown. We want to obtain the velocity and
pressure �elds of the �uid dragged by P, that we consider in�nite, over R, in steady-state
conditions. This implies that the mentioned �elds are constant in the chosen reference, the
one attached to R and the study is then stationary.

2.1. Reynolds equation

In most of the tribology literature, hydrodynamic contact issues are generally solved using a
classical or modi�ed Reynolds equation, which is a simpli�cation of the full Navier–Stokes
equations. Examples of such applications are available in References [5, 6]. This equation
requires two additional assumptions, altogether with those established in Section 2:

c6: The pressure is constant through the �uid �lm (no pressure variation along x3-axis).
c7: The �ow is laminar (no turbulence).

The two-dimensional steady-state Reynolds equation for the incompressible laminar �ow
involved in the hydrodynamic contact described by our model (Figure 2) is given by

@
@x1

(
h3
@p
@x1

)
+

@
@x2

(
h3
@p
@x2

)
= 6�vp

@h
@x1

(2)

Using Reynolds equation for con�gurations accepting the assumptions above is interesting
mainly for two reasons. First, the equation is easier to solve than the full Navier–Stokes
equations and its numerical implementation is considerably less onerous. Second, it is

Figure 2. 2D contact.
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1358 C. A. CACIU AND E. DECENCIERE

commonly used for tribological issues and for numerous other studies similar to ours. Hence,
referenced solutions are available to validate some of our results.
Nevertheless, this resolution approach is restrictive and brings consequent simpli�cations

to the model. The applicability of Reynolds equation is limited to thin contact con�gurations
(c6 valid) for which the rough surface R infers laminar or laminar-approximate �ows
(c7 veri�ed). Therefore, Navier–Stokes equations will be employed in our case for further
research. Besides the ability to study larger areas of rough topographies, this provides us with
a more complete tool to explore the inner complex phenomena involved in hydrodynamic
contacts and to analyse the in�uence of the topography on the tribological properties of rough
surfaces.

2.2. Navier–Stokes equations

The general equations governing our physical model are those of Navier–Stokes, station-
ary and incompressible. In the velocity–pressure (primitive variables) formulation [2, 7], the
momentum and continuity equations are

(v · ∇)v+ 1
�

∇p− ��v = 0 (3)

∇ · v = 0 (4)

� being the �uid density and � the kinematic viscosity.
Moreover, in order to simplify the discretization and the numerical resolution, it is suitable

to write the precedent equations in the non-dimensional formulation [8]. Therefore, we de�ne
a characteristic length L = min(l1; l2; l3). The non-dimensional variables are

y =
x
L
; u =

v
vp
; q =

p
�vp2

(5)

One can notice that the dragging velocity vp is brought to unity. In these variables, the
non-dimensional Navier–Stokes equations become:

(u · ∇)u +∇q− 1
Re

�u = 0 (6)

∇ · u = 0 (7)

The system parameters gather into only one non-dimensional parameter, the Reynolds number:

Re =
vpL
�

(8)

which is the ratio between the momentum convection (non-linear) and the momentum di�usion
(linear), or between the inertial and the friction forces. The Reynolds number varies linearly
with vp and for considerable velocities the �ow may be non-laminar. Therefore, neither the
momentum convection nor the momentum di�usion will be neglected.
Working at real scale, with signi�cant Reynolds numbers and in presence of the roughness

of R leads to a complex model, as no additional simpli�cation to the preceding equations is
possible. On the other hand, the Reynolds numbers we work with are of the same order as
those of real con�gurations, which is essential for the relevance of the simulation results.
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2.3. Boundary conditions

To solve Reynolds or Navier–Stokes equations, boundary conditions have to be added. Con-
sidering a total adhesion of the �uid to solid surfaces, conventional no-slip wall boundary
conditions (no-slip velocity and zero pressure gradient) are required on plate P:

v|(x∈P) = vp · i1 (9)

@p
@n

∣∣∣∣
(x∈P)

= 0 (10)

and on the rough surface R:

v|(x∈R) = 0 (11)

@p
@n

∣∣∣∣
(x∈R)

= 0 (12)

n being the normal to the solid surface in each point x. In addition, these conditions are
completed by the imposed upwind and downwind pressures:

p(l1; x2; x3) = p1; p(0; x2; x3) = p2 (13)

It should be noticed that the boundary conditions are incomplete; there is no condition on
x2-axis. As no additional information is available, several options are feasible.
The �rst would be to impose restrictive Dirichlet conditions, alternative that requires prior

assumptions on the �ow inside the contact.
A second option, widely used in applications, is to use periodic boundary conditions though

they are not suited to our problem; indeed, the borders corresponding to x2 = 0 and l2 may be
very dissimilar and periodicity would induce discontinuities and inconsistency in the continuity
equation.
A third option, as a solution to the discontinuities produced by the periodic boundaries,

would be to extend the computation domain by adding a mirror of R starting from x2 = l2,
as illustrated in Figure 3, and to apply periodic boundary conditions to the new domain. Beside
the duplication of the computation domain as a result of the mirror operation,
another impediment brought by this solution consists in the spurious values resulting for x2 = 0
and l2.

Figure 3. Mirror–boundary conditions.
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1360 C. A. CACIU AND E. DECENCIERE

Finally, another option would be that the boundary values be required to satisfy an
extrapolation condition (consistent with the continuity equation); speci�cally, they must satisfy
free-boundary-type conditions:

@v
@x2
(x1; 0; x3) = 0;

@v
@x2
(x1; l2; x3) = 0 (14)

According to the resolution method used, restrictive or free boundary conditions will be
further employed.

2.4. Cavitation conditions

A notable phenomenon that may occur in a hydrodynamic contact, under speci�c conditions,
is �uid cavitation. It consists in the formation of gas cavities in the diverging regions of
the �uid �lm, which has a strong in�uence on the hydrodynamic pressure. This consequently
has an e�ect on the �ow inside the contact. Therefore the nature of the cavitations and the
conditions under which these phenomena occur deserve a deeper examination.
Hamilton et al. [9] showed experimentally the presence of gas cavitations in micro-textured

seal contacts, while Priest et al. [10] presented a detailed review of the physical nature of
cavitation and alternative analytical models of �lm rupture and reformation. We employ here
the commonly used Reynolds or Swift–Steiber continuity boundary conditions, which implies
that, on the cavitation–�uid interface, the pressure gradient with respect to the direction normal
to the boundary is zero:

p = pcavity;
@p
@x
= 0 (15)

where the pressure in the gas cavities, pcavity, is the saturation pressure of the dissolved gas
which is generally assumed to be equal to the atmospheric pressure.

3. NUMERICAL RESOLUTION METHODS

We will devote this work to the resolution of the Navier–Stokes equations presented in
Section 2.2, with no additional simpli�cations, by direct numerical simulation (DNS). This
approach is the most accurate for turbulence reproduction and yields detailed information
about the �ow.
We have to solve the PDE system (3) and (4) which is of second order and non-linear.

The unknown variables are the velocity and pressure �elds (v; p).
Finite di�erences, �nite elements or spectral methods may be employed for the numerical

resolution of the PDE. Here, in the presence of roughness, we will restrict our choice to the
�nite di�erence approximation methods.

3.1. Numerical scheme

3.1.1. Discretization. For the discretization of the domain, several types of grids are available
[11, 12]: uniform orthogonal, non-uniform orthogonal or unstructured. We choose to work
with uniform orthogonal grids which have the simplest implementation. According to the
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Figure 4. Uniform orthogonal grids: (a) Collocated grid; and (b) MAC (Marker and Cell) grid.

resolution method used, the grid employed may be collocated (Figure 4(a)) or staggered
(Figure 4(b)).
Let �x1, �x2 and �x3 be the sampling steps used to sample the 3D domain. The dis-

cretization of the unknown variables (v; p) conduces to a 3D matrix of size n1×n2×n3 with:

n1 =
l1

�x1 + 1; n2 =
l2

�x2 + 1; n3 =
l3

�x3 + 1

An important aspect to be examined is the isotropy of the grid spacing. Stability problems
may occur if there are considerable dissimilarities between the di�erent sampling steps. It
results directly from the numerical implementation of the methods: the discrepancies between
the di�erent sampling steps may induce data over�ows and can turn the algorithms unstable.
A valid simulation must also capture all of the kinetic energy dissipation. This occurs on

the smallest scales, the ones on which viscosity is active, so the size of the grid spacing must
not be greater than the determined Kolmogorov micro-scale:

� =
(
�3

�

)1=4
(16)

� being the turbulence dissipation rate (into heat). It can be shown [12] that �∼v3p=L and
using (8) we deduce a practical expression for �:

� ∼
(
�3L
v3p

)1=4
(17)

The space steps �x1, �x2 and �x3 must therefore be smaller than the scale given by the
expression above.

3.1.2. Iterative methods. Owing to the complexity of the PDE system (3) and (4), the com-
putation of the associated matrix would be laborious. Moreover, the computation �eld being
three dimensional and of considerable size, the direct solution of the system is not an option.
Consequently, iterative methods will be employed. For this we will consider the unknown
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�elds (velocity and pressure in every point of the grid) as being a set of vectors (vn; pn),
de�ned by an initial state (v0; p0) and an iterative law:

(vn+1; pn+1) = 	(vn; pn) (18)

set which tends towards the system solution.
Another issue of Navier–Stokes equations is the non-linearity of the momentum equa-

tion (3). To apply iterative techniques and be able to write system (3) and (4) into the linear
iterative formulation (18), it is necessary to linearize [13] the convection term (v · ∇)v. For
this, we use the Euler formulation:

[(v · ∇)v]n+1 � (vn+1 · ∇)vn + (vn · ∇)vn+1 − (vn · ∇)vn (19)

There are several iterative methods working with �nite di�erences. We will limit our study
to the commonly used relaxation and fractional-step techniques. It is essential to explore sev-
eral methods: �rst, being distinctive and using di�erent discretization schemes, the comparison
of their results allows to draw conclusions on their performance; second, by comparing their
precision, convergence and robustness, we are able to choose the most suited ones to our
issue.

3.2. Relaxation methods

The crucial point of the resolution algorithms for Navier–Stokes equations lies in the velocity–
pressure coupling, which is the way to obtain the pressure update starting from the continuity
and momentum equations. The relaxation techniques [12, 14] are iterative resolution methods
which solve the coupled linear Navier–Stokes system, i.e. the velocity and the pressure are
updated at the same time. Consequently, during computation, the momentum and continuity
equations are satis�ed simultaneously which implies that the conservative form may be used
for the momentum equation.
Once the convective term linearization is done and the system discretization is performed,

the global iterative linear system becomes:(
vn+1

pn+1

)
=M ·

(
vn

pn

)
+N (20)

In our case, the iterative algorithm works locally, step by step, and does not employ the
global form (20). This is mainly due to the complexity of the equations and the considerable
size of the computation domain; indeed, the matrices M and N may be very large (up to
224 × 224 =248 elements). The method stops when the computed values become steady.
Two relaxation techniques are available: Jacobi and Gauss–Seidel. In practice, the Gauss–

Seidel technique is the most often used because it allows a faster convergence and uses less
memory load. Classic over (or under)-relaxation techniques are also employed in order to
accelerate (or decelerate, for robustness issues) the convergence rate.

3.2.1. Free-boundary conditions. The boundary conditions (9)–(13) are applied to the edges
of the computation matrix. In addition, on x2-axis, we use the free-boundary conditions (14)
discussed in Section 2.4.
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Unfortunately, the tests carried out with this implementation do not ensure the convergence
of the system towards a stable solution. This lack of robustness is probably due to numerical
issues related to the speci�city of the computation domain. We work in a boundary layer
zone in which the velocity variation terms are much higher than the pressure gradient terms.
This may be a cause of the numerical instabilities encountered.

3.2.2. Restrictive boundary conditions. A di�erent manner to apply boundary conditions and
to avoid the free-boundary option in the current con�guration is to replace the physical model
by a di�erent one, simpli�ed with regard to the boundary conditions, and which will give
similar results. It consists in adding to R smooth margins of dimensions proportional to its
size (Figure 5). Thus, the rough pro�le R is framed by a smooth zone in which the �ow
study can be solved analytically. We neglect the e�ects of the inner turbulent �ow on the
edge �ow (the margins are large enough) and vice versa; we suppose that the edges of the
new �eld carry a planar Couette �ow. In this case we can apply the relaxation algorithms
with restrictive boundary conditions for all the borders of the new domain. For the planar
Couette �ow, in the current con�guration, the Navier–Stokes equations are

@p
@x1

− 1
Re
@2v1
@x23

= 0 (21)

@p
@x2

= 0 (22)

@p
@x3

= 0 (23)

The pressure pro�le is thus linear p(x1) = ax1+b and the pro�le of the v1 velocity component
is parabolic v1(x3)= c1x23 + c2x3 + c3. The boundary conditions (9)–(13) give the velocity and
pressure �elds expressions on the borders:

p(x1; x2; x3)|@� = p1 − p2
l1

x1 + p2 (24)

v(x1; x2; x3)|@� = (v1(x3); 0; 0)
v1(x1; x2; x3)|@� = Re

2
p1 − p2
l1

x3(x3 − l3) + vpl3 x3
(25)

Figure 5. Restrictive boundary con�guration.
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The algorithm implemented with these new conditions has a faster convergence rate. The new
boundary values are useful for the inner values update and their propagation inside the com-
putation matrix is faster. Regarding the relevance and precision of the output results, the way
in which the smooth margins are introduced plays an important part; indeed, it is necessary
that their dimensions exceed a certain percentage (about 10–20%) of R dimensions so that
the non-interference presumption remains valid. Moreover, the height level of these margins
relative to the pro�le roughness mean level plays an important part; several positioning options
are considered: minimum, maximum, mean or median value of R (Section 4.3).

3.2.3. Implementation. The selected relaxation algorithms work with the uniform orthogonal
grid illustrated in Figure 4(a) which represents the computation volume by a 3D matrix.
The two Jacobi and Gauss–Seidel techniques are implemented. The iterative methods are
well adapted to this 3D study; if n is the characteristic size of the computation domain
and n3 the number of computation points it contains (in practice n∼28), there are about
n5 local elementary computations required for convergence while the direct methods (Gauss
elimination) need about n7. Moreover, the Gauss–Seidel Technique appears to be twice faster
than the Jacobi one.

3.3. Fractional-step methods

Di�erent methods have been devised in order to reduce the computational complexity of the
original problem through a separate update of velocity and pressure �elds. This strategy, called
also fractional-step, is computationally very e�cient compared with the coupled approach;
however, the price for the decoupling may be some loss of accuracy.
The fractional step methods have been the subject of considerable discussion and improve-

ment over the past years and nearly all numerical methods dedicated to solve Navier–Stokes
equations in terms of primitive variables use this approach. There are several recent papers
carrying interesting reviews and discussions on the fractional-step equations, the choice of
intermediate boundary conditions and the accuracy of the methods [8, 12].
We will further examine and apply two of these approaches: the projection methods and

the arti�cial compressibility methods, both introduced by Chorin in the late 1960s. In our
application they will be implemented using MAC grids (Figure 4(b)).

3.3.1. Chorin–Temam projection scheme. The principle of projection methods is to advance
the momentum equation and to enforce the continuity condition in separate steps. The the-
oretical framework is provided by the Hodge decomposition theorem, which states that any
vector function ṽ can be decomposed into a divergence-free part v plus the gradient of a
scalar potential �, i.e.

ṽ = v+∇� (26)

with ∇·v = 0. In order to have a unique decomposition, boundary conditions must be speci�ed
as well. This class of schemes is now widely used in practice and has been rigorously analysed
in References [15, 16].
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The most classical projection method is the Chorin–Temam scheme. The typical form con-
sists in three successive steps brie�y described below:

1. Find a preliminary (intermediate) velocity ṽn+1 of the velocity �eld as the solution of
the following semi-discrete problem:

1
�t (ṽ

n+1 − vn) + [(ṽ · ∇)ṽ]n+1 − 1
Re
�ṽn+1 = 0 in � (27)

B(ṽn+1) = 0 (28)

where B(ṽn+1) represents a boundary condition for ṽn+1 which must be speci�ed as a
part of the method. The treatment of the non-linear term [(ṽ · ∇)ṽ]n+1 may be performed
using one of the linearization techniques presented in Section 3.1.2.

2. Determine vn+1 and pn+1 as being the solution of:

1
�t (v

n+1 − ṽn+1) +∇pn+1 = 0

∇ · vn+1 = 0
in � (29)

with vn+1 · n=0 on @�.
This step can be reformulated in a way allowing the computation of vn+1 and pn+1

separately. Indeed, by formally applying the divergence operator on (29), we obtain the
following Neumann problem for pn+1:

�pn+1 =
1

�t∇ · ṽn+1 in � (30)

@pn+1

@n
= 0 on @� (31)

We have to notice that the Neumann condition on the pressure is a by-product of the
projection and it may not be veri�ed (in our case it is) by the original unsplit problem.

3. Finally, the end-of-step velocity �eld is obtained by updating vn+1 as follows:

vn+1 = ṽn+1 − �t∇pn+1 (32)

using boundary conditions consistent with the previous ones.

On the basis of the above decomposition, the Chorin–Temam splitting is able to ensure the
mass conservation of the solution (as the end-of-step velocity is divergence free). The chosen
stop criterion is the small variation of the computed values between two successive iterations.

3.3.2. Implementation. The tests carried out with Arti�cial Compressibility algorithms show
that these methods are not adapted to our boundary layer �ow simulation. As for the Chorin–
Temam projection scheme, its implementation proved to be stable, accurate and rather ro-
bust in terms of intermediate boundary conditions. Although its computational complexity is
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reduced compared to the original problem, its convergence rate is slightly slower than the one
shown by the relaxation techniques. In return, its major advantage comes from the decoupled
update equations which allow pressure-correction cavitation conditions (Section 2.4) without
perturbing the continuity equation.

3.4. Selected methods

The arti�cial-compressibility based algorithms being ine�ective, the restrictive boundary
relaxation (NS-r) and the projection (NS-p) methods have been selected for the simulation of
non-laminar �ows inside the hydrodynamic contact.
A relaxation algorithm for the resolution of Reynolds equations was also implemented

(RE-r) in order to reduce the computational complexity when laminar �ows occur in our
hydrodynamic contact model.
The comparison and testing of the algorithms results will give a qualitative and quantitative

measure of their precision, speed and applicability to the problem under study.

4. TESTS AND RESULTS

4.1. Context

The implementation of the computing methods has been performed within the framework of
a hydrodynamic friction prediction tool. An overview of the global tool structure is illustrated
in Figure 6. The model receives as input 2D images representing real or simulated (rough)
surfaces, and the physical and geometrical parameters of the contact:

• Physical properties of the �uid: density �, viscosity �.
• Boundary conditions: pressures p1, p2; velocity vp.

Figure 6. 3D prediction.
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• Geometrical parameters of the contact: R′ dimensions l1; l2, contact thickness l3, grid
spacing �x1, �x2, input image level scale �x3.

The output will consist in the velocity and pressure �elds inside the contact. The initial
conditions chosen for the velocity and pressure �elds (v0; p0) have a signi�cant in�uence on
the accuracy and the convergence rate of the algorithms; three choices are available:

• They are set to 0.
• They are set to average vales computed using the boundary values.
• They are set to approximate values corresponding to a planar Couette �ow, easy to
compute.

We will use the second option, which seems to be the best compromise in our case.
The algorithms were implemented in C++ using the VTK c©Kitware library for data manip-

ulation and the Morphee c©CMM-ENSMP library for morphological image processing.

4.2. Physical measures

The detailed pressure and velocity �elds give access to various local and global physical
measures. A few of them are detailed below.

4.2.1. Viscous power loss. A way to verify the relevance of the results is to use the velocity
and pressure �elds to compute measurable physical quantities, that are characteristic of the
contact. We can thus compare, through these quantitative measures, the results of the di�erent
algorithms implemented with experimental results. Starting from the velocity �eld and the
�uid properties we can express the viscous dissipated power [2]:

Pviscous =
∫
V

∑
i;j

(
�ij
@vi
@xj

)
dV =

1
2

∫
V

∑
i;j

[
�ij

(
@vi
@xj

+
@vj
@xi

)]
dV (33)

�i; j being the viscous constraint tensor in an incompressible �uid:

�ij = ��
(
@vi
@xj

+
@vj
@xi

)
(34)

We obtain �nally the viscous power loss expression, in an incompressible �uid, that is
dissipated irreversibly:

Pviscous =
��
2

∫
V

∑
i;j

(
@vi
@xj

+
@vj
@xi

)2
dV (35)

which is in practice a measurable physical quantity. As we have local access to the velocity
�eld we can also build easily the 3D friction losses �eld in the contact.

4.2.2. Flow. The �uid �ow in the i1 and i2 directions can be easily computed, for each
(x1; x2), by integrating the velocity over the appropriate surfaces, as illustrated in Figure 7.
The �ow expressions are

Q1(x1) =
∫ l3

0

∫ l2

0
u1(x1) dx2 dx3 (36)
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Figure 7. Average �ow computation.

Figure 8. Load computation.

Q2(x2) =
∫ l3

0

∫ l1

0
u2(x2) dx1 dx3 (37)

4.2.3. Load. If the pressure distribution is integrated over P area we obtain the total load
that can be held by the �uid �lm (Figure 8).
The expression of the load is

W =
∫ l2

0

∫ l1

0
p(l3) dx1 dx2 (38)

4.3. Fluid �lm thickness

An important choice to make when building the 3D contact is the positioning of P relative
to R (Figure 9).
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Figure 9. Contact thickness.

Several options are available:

• Starting from the minimum of R.
• Starting from the maximum of R.
• Starting from the average or the median value of R.
• In order to contain a precise �uid quantity.
• Dynamic: if we consider an external force Fp on P, the �lm thickness will be the result
of the equilibrium between Fp and the force generated by the hydrodynamic load on P.

This parameter is very important for the model as it considerably in�uences the results.
However, the choice of the contact thickness highly depends on the practical con�guration
studied.

4.4. Validation and benchmark

In order to validate the results of this study it is necessary to proceed into steps. First, the
relevance of the results provided by the numerical methods has to be con�rmed, and second, if
one wants to apply this solution to various real con�gurations, the e�ectiveness of the model
for those cases has also to be proven. In other words, the assumptions made in Section 2
must be valid and the model must be representative for the speci�c hydrodynamic contact
studied.
Here we will limit the tests to the algorithms examination, the second step being related to

experimental tests and future research.
Before moving to the algorithms examination we will introduce some simulation examples.

In Figure 10(a), we present an example of simulated asperity, a truncated cone opening,
while Figure 10(b) shows a topographic image of a real rough metal surface. Examples of
computation results carried out on the topographic image from Figure 10(b), with the NS-r
algorithm, are provided as follows. The parameters of the 3D contact are given in Table I.
The v1 component, the most signi�cant component of the velocity �eld, is represented in

Figure 11. We notice the highest velocity values on P boundary (10m=s) and zero values at
the interface between R and the �uid.

4.4.1. Couette �ow. A �rst test to carry out is to check whether the algorithms presented
give the expected results for the simplest con�guration, that of the planar Couette �ow, for
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Figure 10. Rough surfaces: (a) Simulated asperity; and (b) topographic image.

Table I. Simulation example—contact parameters.

Parameter Value Parameter Value

vp 10.0m=s l1 384:0 �m
p1 20.0 bar l2 384:0 �m
p2 10.0 bar l3 3:0 �m
� 900:0 kg=m3 �x1, �x2 3:0 �m=pixel
� 6:0× 10−6 m2=s �x3 0:1 �m=level

Figure 11. Example of the v1 velocity �eld—cuts representation.

which the analytical solution is known (Section 3.2). The contact parameters are those given
in Table I.
Figure 12(a) and (b) present a parallel between pressure and v1 velocity pro�les given on

the one hand by the analytical results, and on the other hand by the three algorithms chosen
in Section 3.4, NS-p, NS-r and RE-r.
In terms of physical measures, a comparison between the three methods via three tribological

parameters is provided in Table II. The values estimated by the di�erent methods are very
close to those provided by the analytical solution.
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Figure 12. Couette �ow—pressure and velocity pro�les: (a) p—linear
pro�le; and (b) v1—parabolic pro�le.

Table II. Couette �ow—measures.

Method Friction losses (mW=mm2) PMF (milibar) Load (bar)

NS-p 96.946 0.250 15.011
NS-r 96.294 0.243 15.001
RE-r 95.484 0.236 14.995
Analytic 95.481 0.236 15.000

We remind that the Couette �ow satis�es the assumptions c6 and c7 required by the
Reynolds equation. From Table II, we conclude that RE-r provides accurate results, very
close to those given by the analytical method. As to NS-p and NS-r, their accuracy is still
very good, taking into account their greater computational complexity compared to RE-r,
which is largely su�cient for this simple case.

4.4.2. Flow over simple pro�les. Another con�guration for which the analytical solution may
be computed is the �ow over simple pro�les like the one presented illustrated in Figure 13(a).
The 2D contact model is presented in Figure 13(b). The trapezoidal pro�le is constant on
x2-axis, the contact height varies only with x1. For this con�guration, Navier–Stokes equations
would still give a rather complex analytical solution. Instead, we will use Reynolds equation,
whose expression is

@
@x1

(
h3
@p
@x1

)
= 6�vp

@h
@x1

(39)

Subsequently, the analytical expression of the pressure and velocity �elds may be obtain.
Then, we compare this analytical solution with the simulation results for this particular

con�guration. The contact parameters are given in Table III and no cavitation condition was
used. Figure 14(a) and (b) present a comparison between pressure and v1 velocity pro�les
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Figure 13. Simple pro�le con�guration: (a) Trapezoidal pro�le; and (b) 2D contact.

Table III. Flow over simple pro�les—contact parameters.

Parameter Value Parameter Value

vp 10.0m=s l1 384:0 �m
p1 1.01325 bar l2 384:0 �m
p2 1.01325 bar l3 3:0 �m
� 900:0 kg=m3 �x1, �x2 3:0 �m=pixel
� 6:0× 10−6 m2=s �x3 0:1 �m=level

Figure 14. Flow over simple pro�les—pressure and velocity: (a) p pro�le; and (b) v1 pro�le.

given on the one hand by the analytical solution, and on the other hand by the NS-p and
RE-r numerical methods. NS-r has not been tested as the restrictive boundary conditions do
not suit to this particular pro�le geometry.
We observe good correlation between RE-r and the analytic solution of the Reynolds equa-

tion. The results provided by NS-p are slightly di�erent as this method is based on the full
Navier–Stokes equations and take into account the inertial terms.

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1355–1377



NUMERICAL ANALYSIS OF A 3D HYDRODYNAMIC CONTACT 1373

Figure 15. Convective terms—histograms: (a) NS-p; (b) NS-r; and (c) RE-r.

Figure 16. Convergence rate: (a) Simulated asperity; and (b) topographic image.

4.4.3. Non-laminar �ow. We will now study the behaviour of the algorithms for contacts
containing the rough surface shown in Figure 10, which may involve non-laminar �ows. As
c7 is no longer valid, the results provided by RE-r will be examined and compared with those
given by the Navier–Stokes solvers. The contact parameters are those given in Table I.
In Figure 15, we plot the histograms of the convective (turbulence) terms (v ·∇)v computed

with the three methods for a contact using the topographic image (Figure 10(b)). We observe
that RE-r outputs much smaller convective terms than the other two methods which, contrary
to RE-r, take turbulence into account. Indeed, we deal with a rough surface which may not
guarantee the laminar �ow assumption made by RE-r.

4.4.4. Convergence rate. The convergence rate gives substantial information on the compu-
tational time. In the �gures above, the global di�erence between two successive computed
(pressure) �elds, divided by the number of computation points, is plotted against the iteration
step. The stop criterion is satis�ed when this di�erence becomes smaller than the normalized
value 0:001. We represent the convergence rate of NS-p, NS-r and RE-r for the simulated
roughness contact in Figure 16(a), and for the topographic surface contact in Figure 16(b). A
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Table IV. Restrictive boundaries—contact parameters.

Parameter Value Parameter Value

vp 10.0m=s l1 256:0 �m
p1 10.0 bar l2 256:0 �m
p2 10.0 bar l3 3:0 �m
� 900:0 kg=m3 �x1, �x2 1:0 �m=pixel
� 6:0× 10−6 m2=s �x3 0:1 �m=level

Table V. Restrictive boundaries—measures.

Method Friction losses (mW=mm2) PMF (milibar) Load (bar)

NS-p 94.937 0.199 9.568
NS-r (10% padding) 94.830 0.195 9.999
NS-r (20% padding) 94.816 0.195 9.999
RE-r 94.814 0.195 9.997

�rst result emerging from the �gures above is the in�ection showed by the NS-p algorithm
convergence curve. This proves that for the projection method the chosen boundary conditions
are essential; an inadequate option could compromise the convergence.
We can notice that among the three methods NS-p is characterized by the longest com-

putation time, having a slow update rate. In return, NS-r starts strongly, making substantial
updates, and stops abruptly after few iterations. The important modi�cations made during the
�rst steps may be responsible for the numerical instabilities discussed in Section 3.2. As for
RE-r, it quickly approximates a near-accurate solution and converges rather slowly towards
the �nal solution. However, it should be noticed that if n is the characteristic size of the 3D
computation volume, the computation time cost to scan the entire volume is proportional to n3

for NS-p and NS-r, and to n2 for RE-r. Thus, RE-r is far more rapid in terms of computation
time.

4.4.5. Restrictive boundaries. Another interesting test to perform is to prove the relevance
of the boundary solution put forward in Section 3.2. We will check whether the restrictive
boundary conditions (implemented with NS-r) lead to the same results as the NS-p and
RE-r algorithms. In order to do so, computations on the topographic image (Figure 10(a))
are carried out, using the contact parameters mentioned in Table IV.
The level of the added smooth margins matches R median value and their size represents

10% (respectively 20%) of R size. Table V presents a parallel, in terms of physical measures,
between the di�erent algorithms employed.
We compare in Figure 17 the pressure �eld output by NS-r (10% padding) with those

given by NS-p and RE-r. The maximum di�erences given by the histograms (∼0:8 bar) are
small compared to the pressure inside the contact (10 bar); in addition, the histograms are
concentrated at the origin, which proves a good resemblance.
In a similar way, we illustrate in Figure 18 the histograms of the di�erences between the

velocity �elds output by the di�erent algorithms. We deal once more with values concentrated
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Figure 17. �p histograms: (a) NS-r–NS-p; and (b) NS-r–RE-r.

Figure 18. �v1 histograms: (a) NS-r–NS-p; and (b) NS-r–RE-r.

at the origin of the histograms, which proves the small in�uence of the restrictive boundary
conditions on the �ow inside the contact.

4.4.6. Resolution and accuracy. For contacts of rough surfaces, the resolution of the input
image details is crucial for the computation. We will carry out tests on the surface represented
in Figure 10(b) by introducing its associated image into the model with various resolutions,
coarser and coarser, multiples of the initial image resolutions. Table I contains the model
parameters for the test with the initial resolutions of the input image. The contact thickness
will be de�ned using the median level of the rough surface.
We work with heterogenous grid spacing, �x3 = 0:1 �m is very small compared to �x1 =

�x2= 1:0 �m. For L � l3, Re � 10 and using (17) we deduce the Kolmogorov micro-scale
on the x3-axis, �3 ∼ 0:9 �m. Analogously, on the x1 and x2 axes, the characteristic length
is L � l1 and the associated micro-scale would be �1;2 ∼ 2:7 �m. For accuracy reasons, as
mentioned in Section 3.1.1, the grid spacing must not exceed the Kolmogorov micro-scales.
Table VI contains the test results for di�erent sampling steps �x1, �x2.
We observe a rather signi�cant gap in the kinetic power dissipation when the grid spacing

goes from 2 �m (¡ �1;2) to 4 �m.
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Table VI. Measures—various resolutions.

Friction losses (mW=mm2)

�x1, �x2 (�m) NS-p NS-r RE-r

1 95.519 93.396 92.516
2 95.620 93.627 92.435
4 93.776 91.501 90.010
8 94.124 89.916 87.864

5. CONCLUSION

A model has been developed to investigate the e�ect of roughness on the �uid �ow taking
place in a hydrodynamic contact. Well-known DNS methods working with �nite di�erences,
based on Reynolds or Navier–Stokes equations, have been adapted and employed; the appli-
cability of these methods to our speci�c problem has been discussed. A friction prediction
tool is in such wise constituted working with rough surfaces represented as 2D input images;
this makes it very easy to manipulate for further tests and research.
The model was subjected to a �rst series of tests to conclude on the relevance of the

numerical methods employed and the results are encouraging; the methods show good con-
vergence and accuracy. Furthermore, future work will enable us to verify the e�ectiveness of
the model to simulate real con�gurations via comparison with experimental tribological tests.
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